Monday, September 22, 2014

RATIONAL ALGEBRAIC EXPRESSION

ALGEBRAIC FRACTIONS
 


     A ratio of two algebraic expressions a/b for example, where b ≠ 0, is called a
                                                                        
rational algebraic expressions. In the ratio a/b ,a is called the numerator, b
                                                                         
is the denominator and is not equal to zero.
    
     Thus, an algebraic fraction is said to be defined when its denominator is not equal to zero.

Examples of Algebraic Fractions:

   2x   ,                   -7x  ,                     -5x   ,                       -4x
   3y                        5y                         6y                            8y


NOTE: 3y, 5y, 6y, and 8y are not equal to zero. Here, we may refer to any rational algebraic expression simply as an algebraic fraction or just fraction.



Simplifying a Fraction

     Simplifying a fraction means reducing it to its lowest term; and it is said to be on its lowest term if both the numerator and the denominator have no common factor except 1 and -1.

     To simplify fraction, divide the numerator and the denominator by the HCF
( highest common factor ), or factor both the numerator and the denominator into prime factors and divide the common factors. The HCF is the expression of the highest degree that can be the divisor of both the numerator and the denominator.
    

Illustrative Examples:

1. Simplify:  4x2y7z
                  12x5y3

Solution: Find first the HCF, and that is 4x2y3. Then divide the numerator and the denominator by the HCF.

                   4x2y7z        =      4x2y3 ( y4z )      =      y4z
                   12x5y3                4x2y3 ( 3x3 )              3x3 


2. Simplify: 4x4y5
                 6x6y4

Solution:
                  4x4y5       =         2x4y4 ( 2y )     =     2y
                  6x6y4                  2x4y4 ( 3x2 )           3x2


3. Simplify:      a2 -  b2
                   (a+b)(3a-b)

Solution:

=
 
=
 
                   a2   –   b2                     (a+b)  (a-b)             a – b
                 (a+b)(3a-b)                   (a+b) (3a-b)             3a-b



NOTE: a2 – b2 is a difference of two squares, and  a – b  cannot be factored anymore.

                                                                        3a - b

EQUIVALENT FRACTIONS

     Fractions that show the same values are called equivalent fractions. These are fractions which can be interchanged with each other by factoring or by changing to lowest terms or to higher multiples. Examples are the ff:
1/2  and 3/6,  x^2/y^3  and  x^3/xy^3,  a/2a  and 5a/10a

OPERATIONS ON ALGEBRAIC FRACTIONS

     The operations on algebraic fractions follow the same rule in arithmetic.

ADDITION AND SUBTRACTION OF ALGEBRAIC FRACTIONS

     Just like in the arithmetic, only similar terms or like fractions ( meaning, having the same denominators ) can be added or subtracted, and the dissimilar or unlike fractions ( meaning, having different denominators ) can only be indicated.

Similar Fractions

Examples:   















Dissimilar Fractions

     This one is more complex than the one having similar fractions. The following are the steps in adding or subtracting dissimilar fractions:

  1. Find the Least Common Denominator ( LCD ). Factor if necessary.
  2. Change the fractions to similar fraction using the LCD.
  3. Add or subtract the numerator and write the result over the LCD.
  4. Always express the answer in its simplest form.


NOTE: The least common denominator ( lcd ) is the smallest number that is divisible by the denominators of the fractions involved. In order to find the lcd, just look for the least common multiples ( lcm ) of the fractions denominator.


















MULTIPLICATION OF FRACTIONS

     To find the product of two or more fractions, just multiply their numerators and their denominators and  express the result in its simplest form. Another way is by using the process of multiplicative cancellation. That is by factoring first the given ( numerator and denominator ) if possible and then cancell the factors.
Illustrative Examples:


 
     · 1. Multiply:       x  –  4             4x +  8
                       2x + 8             x2 – 16








































DIVISION OF FRACTIONS

     To divide fractions, multiply the dividend by the reciprocal of the divisor. The reciprocal of a fraction is the inverse of the faction. In symbol





























































COMPLEX FRACTIONS

     A complex fraction is a fraction that contains one or more fraction in either its numerator or denominator. It maybe simplified by reducing its numerator and denominator to single fraction and then divide and reduce the result to lowest term.
     Another way is by getting the LCD of all fractions contained in the complex fraction and multiply it to the numerator and the denominator of the said fraction, then simplify.















































Wednesday, September 17, 2014

PANGALAN AT PANGHALIP (filipino 1)

PANGALAN

Ang PANGALAN ay bahagi ng panalitang tumutukoy sa ngalan ng tao, bagay, gawa, hayop, lugar, pangyayari o kaisipan.

URI NG PANGNGALAN


  1. PANTANGI- Tiyak itng ngalan ng tao, bagay, gawa, hayop, lugar, pangyayari o kaisipan.
                                 Nagsisimula ito sa malaking titik.
                                 halimbawa: Jollibee      Maria     Manila    Sanyo

     2. PAMBALANA- Karaniwan o pangkalahatan itong ngalan ng tao, bagay, gawa, hayop, lugar,
                                     pangyayari o kaisipan. Nagsisimula ito sa maliit na titik.
                                     halimbawa: barko damit guro manggagamot

ANYO NG PANGNGALAN


   1.  PAYAK- Binibuo ito ng salitang-ugat lamang.
                          Hal. araro  araw  bato  buwan

     2.  MAYLAPI- Binubuo ito ng salitang-ugat at panlapi.
                              hal. binata (bata)  mag-aaral (aral)  panggatong (gatong)  tindahan (tinda)

     3.  INUULIT-  Binubuo ito ng salitang inuulit ang pantig o ang salitang-ugat.
                             Bayan-bayan   buhay-buhay  biru-biruan  kuro-kuro

     4.  TAMBALAN-  Binubuo ito ng dalawang magkaibang salitang pinagsama upang makabuo ng
                                    isang bagong salita.
                                    Halimbawa. anak-pawis  bahag-hari  kapitbahay takipsilim

KASIRIAN NG PANGNGALAN

     1.PANLALAKI- Maari lamang gamitin ang pangngalan para sa mga lalaki.
                                 Hal.  lolo   mario   ninong  tandang

     2.PAMBABAE- Maari lamang gamitin ang pangngalan pa sa mga babae.
                                 Hal.  ate   dalaga  Gng. Ramos  madre  binibini

     3.PAMBALAKI o DI-TIYAK- Maaring gamitin ang pangngalan para sa babae man o lalaki
                                                        Hal.  kapatid  guro  manok  manggawa

     4. WALANG KASARIAN- Hindi nauugnay sa babae man o lalaki.  Nabibilang dito ang mga
                                                   bagay na hindi buhay
                                                   Hal.  aklat  dagat  gusali  Pampanga

 KAUKULAN NG PANGNGALAN

   1.  PALAGYO - Ginagamit ang pangngalan bilang simuno, pamuno sa simuno, pangngalan
                                patawag, kaganapang pansimuno o pamuno sa kaganapang pansimuno.

  • Gamit bilang simuno
                    Hal. Nag-aaral si Maria ng pagluluto bago siya mag-asawa.


  • Gamit bilang pamuno sa simuno
                    Hal. Si Jose, ang ating pangulo, ay marunong umunawa sa mga api.


  • Gamit bilang pangngalang patawag
                    Hal. Pedro, buahtin mo ang sako ng bigas.


  • Gamit bilang kaganapang pansimuno
                    Hal. Si Bill Clinton ay pangulo ng Estado Unidos


  • Gamit bilang pamuno sa kaganapang pansimuno
                    Hal. Ang sundalong iyon ay si Col. Santos, ang pamangkin ni Tiya Maria.

    2. PALAGYON - Ginagamit ang pangngalan bilang layon ng pang-ukol, layon ng pandiwa o
                                  tagaganap ng pandiwang balintiyak.
                   Hal. Sa kanto pupunta si Jose. (layon ng pangukol)
                           Bumili ng bahay ang mag-asawa. (layon ng pandiwa)
                           Kinuha ni Butch ang mga papel sa mesa. (taganap ng pandiwang balintiyak)

    3. PAARI - Nagsasaad ang pangngalan ng pag-aari at karaniwan itong ipinakikilala ng ni, nina, ng
                       at ng mga.
                   Hal.  Binili ni Pedro ang bahay nina Samuel.
                            Panay hirama ang mga aklat ng bata.

PANGHALIP

Ang panghalip ay bahagi ng panalitang ginagamit bilang pamalit o panghalili sa pangngalan.

MGA URI NG PANGHALIP


  1. PANAO - humahalili sa pangngalan ng tao.
                           Hal. Sa pangungusap na "Mabuti si Alice", ang Alice ay maaring palitan ng siya.
                                   Kaya't ang pangungusap ay magiging "Mabuti siya."

MGA PANGHALIP NA PANAO
PANAUHAN/KAILANAN    PALAGYO              PAUKOL               PAARI

ISAHAN
        Una                                  ako                           ko                            akin
        Ikalawa                            ikaw, ka                   mo                           iyo
        Ikatlo                               siya                          niya                         kanya

DALAWAHAN
        Una                                  kata                          nita                          kanita
                                                 kita, tayo                 natin                        atin
        Ikalawa                            kayo                        ninyo                        inyo
        Ikatlo                               sila                           nila                           kanila

MARAMIHAN
        Una                                  kami                        namin                       amin
        Ikalawa                            kayo                        ninyo                        inyo
        Ikatlo                                sila                          nila                           kanila


       hal. Ako ang masusunod.
              Hindi ko ninakaw ang pitaka.
              Akin ang pinakamagandang kuwento.

2.  PAMATLIG - Tagapagturo ito sa mga pangngalan.

                        Hal. Ito ang ebidensya laban sa kanila.
                                Iyan ay panis na.
                                Iyon ang ating pupuntuhan.

Tuesday, September 16, 2014

SPECIAL PRODUCTS AND FACTORS (coalgeb)

SPECIAL PRODUCTS AND FACTORS



SPECIAL PRODUCTS


Square of Binomial

The product of a square of a binomial is the square of the first term plus or minus ( ± ) the product of the first and the second terms plus the square of the second term. In symbol,


( x ± y ) 2 = x2 ± 2xy + y2

Illustrative Examples:

1. Find the product of ( 4x2 + 5y2 ) 2

Solution: ( 4x2 + 5y2 ) 2 = 16x4 + 2 [ ( 4x2 ) ( 5y2 ) ] + 25y4
= 16x4 + 2 ( 20x2y2 ) + 25y4
= 16x4 + 40x2y2 + 25y4

2. Find the product of ( 2a – 3b ) 2

Solution: ( 2a – 3b ) 2 = 4a2 – 2 [ ( 2a ) ( 3b ) ] + 9b2
= 4a2 – 2 ( 6ab ) + 9b2
= 4a2 – 12ab + 9b2

3. Find the product of ( a3 – 5 ) 2

Solution: ( a3 – 5 ) 2 = a6 – 2 [ ( a3 ) ( 5 ) ] + 25
= a6 – 2 ( 5a3 ) + 25
= a6 – 10a3 + 25




Product of Two Binomials

A. In the form of ( x + a ) ( x + b )

The product of two binomials of the form ( x + a ) ( x + b ) is the square of x, plus x times the sum of a and b, plus the product of a and b.

( x + a ) ( x + b ) = x2 + ( a + b ) x + ab


Illustrative Examples:

1. ( x + 3 ) ( x + 8 ) = x2 + ( 3 + 8 ) x + 3 ( 8 )
                              = x2 + 11x + 24

2. ( x + 5 ) ( x + 4 ) = x2 + ( 5 + 4 ) x + 5 ( 4 )
                              = x2 + 9x + 20

3. ( x + 2 ) ( x + 6 ) = x2 + ( 2 + 6 ) x + 2  ( 6 )
                              = x2 + 8x + 12


B. FOIL METHOD

     The four terms are the product of firsts, outers, inners, and the lasts.

                 (  x + a ) ( X + b ) = x2 + ax + bx + ab
                                                = x2 + ( a + b ) x + ab

Illustrative Examples:  Find the product of the following by using the FOIL method:

1. ( 3x + 4y ) ( x – 2y )

Solution:
(1) Find the product of the first terms: 3x ( x )

(2) Find the product of the outside terms: 3x ( -2y ) = -6xy

(3) Find the product of the inside terms: 4y ( x ) = 4xy

(4) Multiply the last terms: 4y ( -2y ) = -8y2

(5) Combined the four terms obtained above and simplify:
         
                  3x2 + ( -6xy + 4xy ) – 8y2 = 3x2 – 2xy – 8y2



C. THE BOX METHOD


     This method is actually similar to the foil method. Make first a 2 by 2 table, thus,


Place each term of the two binomials vertically in each square.
Multiply the terms horizontally and diagonally, combine the result, then simplify: thus, ac + bd + ad + bc.


Illustrative Examples:

Use the foil method to find the product of the following binomials:


. Product of Sum and Difference of Two Same Binomial Expressions

                         
                                  ( a + b ) ( a – b ) = a2 – b2  


    In this product, special characteristics are very evident and it may be obtained by: (i) squaring the first term of the factors; and, (ii) subtracting the square of the second term of the factors. And that is,

     
          ( first term – second term )2 = ( first term )2 – ( second term )2


Illustrative Examples:

1. ( x+ 4 ) - ( x – 4 ) = x2 – 42 = x2 - 16

2. ( X + 2y ) ( x – 2y ) = x2 – (2y)2  = x2 – 4y2

3. ( 2b + 9c ) ( 2b – 9c ) = ( 2b )2 – ( 9c )2 = 4b2 – 81c2



5.1.4. The Square of Polynomial

              
                   ( a + b + c ) 2 = a2 + b2 + c2 +2ab + 2ac + 2bc

   

      That is, the square of polynomial is equal to the sum of the squares of the terms and twice the product of each term by every other term taken separately.


Illustrative Examples:

1. Expand ( 3x – y – 2z )

Solution:

(1) Find the squares of each term of the trinomial;
9x2, y2 and 4z2

(2) Find also twice the product of each term by every other term taken separately;
-6xy, -12xz, and 4yz
(3) Combine the terms an simplify;

9x2 + y2 + 4z2 – 6xy – 12xz + 4yz

2. ( 2a + 3b – 5c )2 = 4a2 + 9b2 – 25c2 + 12ab – 20ac – 30bc

3. ( 3a + 5b + 4c )2 = 9a2 + 25b2 + 16c2 + 30ab + 24ac + 40bc


FACTORS

DEFINITION: If a, b, and c are integers, and a • b = c, then a and b are factors of c and c is a multiple of a and b.

     In the given 3 • 4 = 12, where 3 and 4 are factors of 12 and 12 is a multiple of 3 and 4. Other factors of 12 are  ( -3 ) and ( -4 ), 1 and 12, ( -1 ) and ( -12 ), 2 and 6, and ( -2 ) and ( -6 ).

DEFINITION: A PRIME NUMBER is a number that has no other factors except 1 and itself. 1, 3, 5, and 7 are all examples of prime numbers. And also, 11, 13, 17, 19….. etc.
     A PRIME FACTOR is an expression that has no other factor(s) except 1 and itself.


FACTORING

DEFINITION: FACTORING is the process of finding the factors of a given algebraic expression.

Types of Factoring

Factoring Algebraic Expressions With Common Factors

                     
                          FORMULA:  ax + ay = a ( x + y )

Illustrative Examples:
1. Factor 4ax3 – 8ay2 +12a2x

Solution: By inspection, the common factor is 4a; thus,

4ax3 – 8ay2 + 12a2x = 4a ( x3 – 2y2 + 3ax )


2. Factor 2x ( a + b ) – 3y ( a + b )

Solution: The common factor is ( a + b ); thus,
2x ( a + b ) – 3y ( a + b ) = ( 2x – 3y ) ( a + b )

3. Factor 20xyz + 20xyz2 – 60x2y2z2
Solution: The common factor is 10xyz; thus,
20xyz + 30xyz2 – 60x2y2z2 = 10xyz ( 2 + 3z – 6xyz )


Factoring the Difference of Two Squares

                       
                         FORMULA:     a2 – b2 = ( a + b ) ( a – b )

CONCEPT:

( 1st term )2 – ( 2nd term )2 = ( 1st term + 2nd term ) • ( 1st term – 2nd term )


Procedures in Factoring a Difference of Two Squares:

    1. Identify that you have a perfect square minus another perfect square.
    2. Rewrite the problem as a first base squared minus a second base squared.
    3. Factor the problem into the first base plus the second base times the first base minus the second base.

Illustrative Examples:

1. Write in completely factored form: ( 16a2 – 25b2 )

Solution:

A. Identify that you have a perfect square minus another perfect square;
16a2, 25b2 are perfect square

B. rewrite the problem as a first base squared minus a second base squared;
( 4a )2 – ( 5b )2

C. Factor the problem into the first base, plus the second base, times the first base minus the second base squared;
( 4a + 5b ) x ( 4a – 5b ) ® answer

2. 49x8y6 – 625z8

Solution:

( 7x4y3 )2 – ( 25z4 )2 = ( 7x4y3 + 25z4 ) (7x4y3 – 25z4 )


3. Factor ( 16x4z8 – 81z12 )
Solution:

( 16x4z8 – 81z12 ) = ( 4x2z4 )2 ( 9z6 )2
                          = ( 4x2z4 + 9y6 ) ( 4x2z4 – 9y6 )

Factoring Trinomials

Steps in Factoring a trinomial in the form ax2 + bxy + cy2:

    1. Write all pairs of factors  of the coefficient of the first term
    2. Write all pairs of factors of the last term
    3. Use various combinations of this factor until the necessary middle term is found.
    4. If the necessary combination does not exist, the polynomial is a prime, meaning, it has no factors except 1 and itself.

Illustrative Examples:

1. Factor completely the given ( x2 – 6x + 8 )
Solution:

(a) Factor the first term: The first term is x2 and its coefficient is 1, so the factors of 1 are 1 and 1.

(b) The factors of the last term which is 8 are 8 and 1, 4 and 2, ( -8 ) and ( -1 ), and ( -4 )
( -2 ).

(c) The sign of the middle term is negative, and since the sign of the last term is positive, the sign of the possible factors of the last term are both negative. The only combination  of the factor of the last term to get the sum of 6 is 2 and 4, thus, x2 – 6x + 8 is ( x – 4 ) ( x – 2 ).

2. ( x2 + 9x + 20 ) = ( x + 4 ) ( x + 5 )

3. ( x2 – 10x + 21 ) = ( x – 7 ) ( x – 3 )


Factoring trinomial of the form x2 ( a + b ) x + ab = ( x + a ) ( x + b )


Illustrative Examples:

1. Factor x2 – 3xy – 10y2

Solution: The factor of x2 are x and x, while the factors of -10y2 are:
 ( -5y and 2y ), ( 5y and _2y ), ( -10y and y ), and ( 10y and –y ). Anyone of these sets of factors of -10y2 could be the correct ones. In our example, the correct factors are -5y and 2y; thus,
x2 – 3xy 10y2 = ( x + 2y) ( x – 5y )
2. x2 – 8xy + 15y2 = ( x – 3y ) ( x – 5y )

3. x2 + 5xy + 6y2 = ( x + 2y ) ( x + 3y )
Factoring Trinomial of the Form 

                     acx2 + ( ad + bc ) x + bd (ax + b ) ( cx + d )

     Not just like the other types of factoring, this one involves trial and error


Illustrative Examples:

1. Factor 6x2 + 8xy – 30y2

Solution: Get the factors of 6x2 and the factors of -30y2, then by trial and error, get the correct factors. Thus, 6x2 + 8xy – 30y2 = ( 3x – 5y ) ( 2x + 6y ).


2. Factor 6x2 – 28xy + 16y2

Solution: 6x2 – 28xy + 16y2 = ( 6x – 4y ) ( x – 4y )


3. 64x2 + 96x +35 = ( 8x + 5 ) ( 8x + 7 )


Factoring By Grouping

     Factoring by grouping can be facilitated by grouping together terms that have common factor, then factor.

Illustrative Examples:

1. Factor ax + bx  - ay -by

Solution: Group the first two terms together and also the last two terms, then get their common factors; thus,

ax + bx – ay – by = ( ax + bx ) – ( ay + by )
                          = x ( a + b ) – y ( a + b )
       answer®     = ( x – y ) ( a + b )

NOTE: The sign of ay + by has changed from negative to positive when enclosed by a minus sign.


2. Factor 8x3 – 24x2 - 2x + 6

Solution: Group the first two terms together, and the last two terms together, and get the common factors for both group. Thus,
8x3 – 24x2 – 2x + 6 = ( 8x3 – 24x2 ) – 1 ( 2x – 6 )
=4x2 ( 2x – 6 ) – 1 ( 2x – 6 )
                             
                              = ( 4x2 – 1 ) ( 2x – 6 )

         answer ®       = ( 2x + 1 ) ( 2x – 1 ) 2 ( x- 3 )


3. Factor 25x2 + 30xy + 9y2 + 15x + 9y + 2


Solution: Group the first three terms together, and also, the fourth and fifth terms together. Then, factor both group of terms. The first group is actually a trinomial perfect square. Add the last term and factor.

Thus, 25x2 + 30xy + 9y2 + 15x + 9y + 2

= ( 25x2 + 30xy + 9y2 ) + ( 15x + 9y ) + 2

= ( 5x + 3y )2 + 3 ( 5x + 3y ) + 2

= [ ( 5x + 3y ) + 2 ] [ ( 5x + 3y ) + 1 ]

= ( 5x + 3y + 2 ) ( 5x + 3y + 1 )



Factoring The Sum or Difference Of Two Cubes:

                      SUM: (a3 + b3 ) = ( a + b ) ( a2 – ab + b2 )
 

                      DIFFERENCE: ( a3 – b3 ) = ( a – b ) (a2 + ab + b2 )


NOTE: The factors of the Sum or Difference of two cubes at binomial and trinomial.


STEPS IN FACTORING THE SUM AND DIFFERENCE OF TWO CUBES:

A. Find the terms of the binomial factor by getting the cube roots of the term of the given sum or difference of two cubes.

B. Find the first term of the trinomial factor by squaring the first term of the binomial factor

C. Find the second term of the trinomial factor by getting the product of the first and second term of the binomial factor.


D. Find the last term of the trinomial factor by getting the square of the second term of the binomial factor.

E. Check your answer by multiplying the binomial and trinomial factors obtained. If your answer is correct, you will get the original sum or difference.


Illustrative Examples:

1. Factor x3 + 64

Solution:

A. The cube root of x3  and 64 are x and 4, thus, ( x + 4 )

B To find the first term of the trinomial factor, square the first term of the binomial factor, and that is x2

c. Get the product of the first and the second term of the binomial factor,
( 4 ) ( x ) = 4x

D. Get the square of the second term of the binomial factors, thus, 42 = 16.

Therefore: x3 + 64 = ( x + 4 ) ( x2 + 4x + 16 ) ® answer


2. Factor 27x3 – y3

Solution: The given is the difference of two cubes. Solving using the procedures, we will have the answer;

27x3 –y3 = ( 3x – y ) ( 9x2 + 3xy + y2 )


3.125a3 + 216b3  = ( 5a + 6b ) ( 25a2 – 30ab )




MISCELLANEOUS FACTORING PROCESSES

Factoring The Sum or Difference of Two Like Odd Powers
     The sum or difference of two like odd powers I always divisible by the sum or difference of the numbers respectively.
    
     In factoring the sum or difference of two like odd powers, it is important to remember the following:

1. The factors of the sum or difference of two like odd powers are a binomial and a polynomial.

2. To find the terms of the binomial factor get the odd power roots of the terms of the original binomials. Original binomial refers to the sum  or difference of two like odd powers.

 3. To find the terms of the polynomial factor, divide the original binomial factor using either the long method or synthetic division.

Illustrative Examples:

1. Factor a5 + b5

Solution: The binomial factor of a5 + b5 is ( a + b ). To get the polynomial factor, divide a5 + b5 by ( a + b ), thus,

                               a4 – a3b + a2b2 – ab3 + b4

                 a + b      a5 +  0   +   0   +   0   + b5

                               a5 + a4b
                                     
                                      -a4b

                                      -a4b – a3b2
 

                                                a3b2
                                               
                                                a3b2 + a2b3
 

                                                          -a2b3                                                 

                                                           a2b3 – ab4
 


                                                                     ab4 + b5
                                                               
                                                                    -ab4 + b5
 

                                                                              0
                                                                                                                  
Thus, ( a5 + b5 ) = ( a + b ) ( a4 – a3b a2b2 + ab3 + b4 )

Alternative Way:

     The factors of the sum or difference of two like odd powers can also be found without using division and that is by means of the following steps:


a. The binomial factor is a sum or difference of the odd power roots of two variables of the original binomial.


b. The terms of the polynomial factors has a descending order of power of the first variable.

c. The power of the first term and of the last term of the polynomial factor are one degree lower than the powers of the first variable and of the second variable respectively of the original binomial.

d. The signs of the terms of the polynomial factor are all positive for difference of two like odd powers, and has alternate positive an negative signs for sum of two like odd powers.

Illustrative Examples:

1. Factor x7 + y7

Solution:

X7 + y7 = ( x + y ) ( x6 – x5y + x4y2 + x3y3 + x2y4 + xy5 + y6 )

2. Factor x5 – y5

x5 – y5 = ( x + y) ( x4 + x3y + x2y2 + xy3 + y4 )



Factoring Two – Like Even Powers

     This one can be factored as a Difference of Two Squares. Each factor should be factored repeatedly until the expression is reduced to its prime factors.

Illustrative Examples:

1. Factor x6 – y6
Solution:

X6 – y6 = [ ( x3 )2 – ( y3 )2 ]
           
          
            = ( x3 + y3 ) ( x3 – y3 )
          
           = ( x + y ) ( x2 – xy + y2 ) ( x – y) ( x2 + xy + y2 )






2. Factor x8 – y8

Solution:

X8 – y8 = [ ( x4 )2 – ( y4 )2 ] = ( x4 + y4 ) ( x4 – y4 )
                                          
                                       = ( x4 + y4 ) ( x2 + y2 ) ( x2 – y2 )
                                         
                                       = ( x4 + y4 ) ( x2 + y2 ) ( X + y ) ( x – y )

NOTE: ( x4 + y4 ) and ( x2 + y2 ) are not factorable.

3. Factor  a12 – b12

Solution:

a12 – b12 = [ ( a6 )2 – ( b6 )2 ] = ( a6 + b6 ) ( a6 – b6 )
              
            = ( a6 + b6 ) ( a3 + b3 ) ( a3 – b3 )
              
            = ( a6 + b6 ) ( a + b ) (a2 – ab + b2 ) ( a – b ) ( a2 + ab + b2 )